题目内容
【题目】已知数列满足,.
(1)求;
(2)若,证明:数列中的任意三项不可能构成等差数列.
【答案】(1).(2)答案见解析
【解析】
(1)由递推式可得,即数列是以为首项,为公比的等比数列,再结合等比数列的通项公式求解即可;
(2)先设数列中存在三项,,()按某种顺序构成等差数列,再结合等差中项的运算及指数幂的运算求解即可.
解:(1)据题意设,所以.
又因为,所以,
所以.
又,
即数列是以为首项,为公比的等比数列,
所,
所以.
(2)据(1)求解知,,所以.
假设数列中存在三项,,()按某种顺序构成等差数列.
因为数列是首项为,公比为的等比数列,
所以,
所以只能有成立,
所以,
化简,得.
因为,所以为奇数,为偶数,
故不可能成立,
所以假设不成立.即数列中任意三项不可能构成等差数列.
【题目】某啤酒厂要将一批鲜啤酒用汽车从所在城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,运费由厂家承担.若厂家恰能在约定日期(×月×日)将啤酒送到,则城市乙的销售商一次性支付给厂家40万元;若在约定日期前送到,每提前一天销售商将多支付给厂家2万;若在约定日期后送到,每迟到一天销售商将少支付给厂家2万元.为保证啤酒新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送.已知下表内的信息:
汽车行驶路线 | 在不堵车的情况下到达城市乙所需时间(天) | 在堵车的情况下到达城市乙所需时间(天) | 堵车的概率 | 运费(万元) |
公路1 | 1 | 4 | 2 | |
公路2 | 2 | 3 | 1 |
(1)记汽车选择公路1运送啤酒时厂家获得的毛收入为X(单位:万元),求X的分布列和EX;
(2)若,,选择哪条公路运送啤酒厂家获得的毛收人更多?
(注:毛收入=销售商支付给厂家的费用-运费).
【题目】年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者,为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据:
有接触史 | 无接触史 | 总计 | |
有武汉旅行史 | |||
无武汉旅行史 | |||
总计 |
(1)请将上面列联表填写完整,并判断能否在犯错误的概率不超过的前提下,认为有武汉旅行史与有确诊病例接触史有关系?
(2)已知在无武汉旅行史的名患者中,有名无症状感染者.现在从无武汉旅行史的名患者中,选出名进行病例研究,求人中至少有名是无症状感染者的概率.
下面的临界值表供参考:
参考公式:,其中.