题目内容
已知数列{an}的前n项和Sn,对一切正整数n,点(n,Sn)都在函数f(x)=2x+2-4的图象上.(I)求数列{an}的通项公式;
(Ⅱ)设bn=an•log2an,求数列{bn}的前n项和Tn.
分析:(I)要求数列的通项公式,当n大于等于2时可根据数列的前n项的和减去数列的前n-1项的和求出,然后把n=1代入验证;
(II)要求数列{bn}的前n项和Tn.可先求出该数列的通项公式,列举出数列的各项,然后利用错位相减法得到数列的前n项的和即可.
(II)要求数列{bn}的前n项和Tn.可先求出该数列的通项公式,列举出数列的各项,然后利用错位相减法得到数列的前n项的和即可.
解答:解:(I)由题意,Sn=2n+2-4,n≥2时,
an=Sn-Sn-1=2n+2-2n+1=2n+1
当n=1时,a1=S1=23-4=4,也适合上式
∴数列{an}的通项公式为an=2n+1,n∈N*;
(II)∵bn=anlog2an=(n+1)•2n+1,
∴Tn=2•22+3•23+4•24+…+n•2n+(n+1)•2n+1①
2Tn=2•23+3•24+4•25+…+n•2n+1+(n+1)•2n+2②
②-①得,Tn=-23-23-24-25-…-2n+1+(n+1)•2n+2
=-23-
+(n+1)•2n+2
=-23-23(2n-1-1)+(n+1)•2n+2=(n+1)•2n+2-23•2n-1
=(n+1)•2n+2-1n+2=n•2n+2.
an=Sn-Sn-1=2n+2-2n+1=2n+1
当n=1时,a1=S1=23-4=4,也适合上式
∴数列{an}的通项公式为an=2n+1,n∈N*;
(II)∵bn=anlog2an=(n+1)•2n+1,
∴Tn=2•22+3•23+4•24+…+n•2n+(n+1)•2n+1①
2Tn=2•23+3•24+4•25+…+n•2n+1+(n+1)•2n+2②
②-①得,Tn=-23-23-24-25-…-2n+1+(n+1)•2n+2
=-23-
23(1-2n-1) |
1-2 |
=-23-23(2n-1-1)+(n+1)•2n+2=(n+1)•2n+2-23•2n-1
=(n+1)•2n+2-1n+2=n•2n+2.
点评:本题考查了利用做差法求数列通项公式,利用错位相减法求数列的前n项的和,以及利用等比数列的前n项和的公式,学生做题时应注意利用做差法时讨论n的取值.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
A、16 | B、8 | C、4 | D、不确定 |