题目内容
(本小题满分12分)
在△ABC中,角A、B、C的对边分别为a、b、c, 向量 p="(sinA,b+c), " q=(a-c,sinC-sinB),
满足|p +q |="|" p-q |.
(Ⅰ) 求角B的大小;
(Ⅱ)设m=(sin(C+),),n="(2k,cos2A)" (k>1), m·n有最大值为3,求k的值.
解:(Ⅰ)由条件|p +q |="|" p -q |,两边平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,
即,又由余弦定理=2acosB,所以cosB=,B=.
(Ⅱ)m=(sin(C+),),n="(2k,cos2A)" (k>1),
m·n=2ksin(C+)+cos2A="2ksin(C+B)" +cos2A
=2ksinA+-=-+2ksinA+=-+ (k>1).
而0<A<,sinA∈(0,1],故当sin=1时,m·n取最大值为2k-=3,得k=.
解析
练习册系列答案
相关题目