题目内容

已知函数),其中

(Ⅰ)当时,讨论函数的单调性;

(Ⅱ)若函数仅在处有极值,求的取值范围;

(Ⅲ)若对于任意的,不等式上恒成立,求的取值范围.

 

【答案】

(Ⅰ)解:

时,

,解得

变化时,的变化情况如下表:

0

2

0

0

0

极小值

极大值

极小值

所以内是增函数,在内是减函数. 

(Ⅱ)解:,显然不是方程的根.

为使仅在处有极值,必须成立,即有

解些不等式,得.这时,是唯一极值.

因此满足条件的的取值范围是.                               

(Ⅲ)解:由条件,可知,从而恒成立.

时,;当时,

因此函数上的最大值是两者中的较大者.

为使对任意的,不等式上恒成立,当且仅当,即,在上恒成立.

所以,因此满足条件的的取值范围是

【解析】略

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网