题目内容
【题目】直角坐标平面内,每个点绕原点按逆时针方向旋转的变换所对应的矩阵为,每个点横、纵坐标分别变为原来的倍的变换所对应的矩阵为.
(I)求矩阵的逆矩阵;
(Ⅱ)求曲线先在变换作用下,然后在变换作用下得到的曲线方程.
【答案】(Ⅰ);(Ⅱ).
【解析】
试题分析:(1)在直角坐标平面内,将每个点绕原点按逆时针方向旋转的变换所对应的矩阵为.所以由旋转变换得到的公式即可求得矩阵M.再根据逆矩阵求出结论.
(2)将每个点横、纵坐标分别变为原来的倍的变换所对应的矩阵为,由于曲线先在变换作用下,然后在变换作用下得到的曲线方程.所以.所以在曲线上任取一点,通过NM的变换即可得到结论.
(1) ,,.4分
(2) ,,
代入中得:.
故所求的曲线方程为:. 7分
练习册系列答案
相关题目
【题目】下表为年至年某百货零售企业的线下销售额(单位:万元),其中年份代码年份.
年份代码 | ||||
线下销售额 |
(1)已知与具有线性相关关系,求关于的线性回归方程,并预测年该百货零售企业的线下销售额;
(2)随着网络购物的飞速发展,有不少顾客对该百货零售企业的线下销售额持续增长表示怀疑,某调查平台为了解顾客对该百货零售企业的线下销售额持续增长的看法,随机调查了位男顾客、位女顾客(每位顾客从“持乐观态度”和“持不乐观态度”中任选一种),其中对该百货零售企业的线下销售额持续增长持乐观态度的男顾客有人、女顾客有人,能否在犯错误的概率不超过的前提下认为对该百货零售企业的线下销售额持续增长所持的态度与性别有关?
参考公式及数据:
.