题目内容

18.设x>0,y>0,且x2+$\frac{{y}^{2}}{2}$=1,求x$\sqrt{1+{y}^{2}}$的最大值.

分析 由基本不等式可得x$\sqrt{1+{y}^{2}}$=$\frac{\sqrt{2}}{2}$•$\sqrt{2}$x•$\sqrt{1+{y}^{2}}$≤$\frac{\sqrt{2}}{2}$•$\frac{{(\sqrt{2}x)}^{2}+(\sqrt{1+{y}^{2}})^{2}}{2}$,代值计算可得.

解答 解:∵x>0,y>0,且x2+$\frac{{y}^{2}}{2}$=1,
∴x$\sqrt{1+{y}^{2}}$=$\frac{\sqrt{2}}{2}$•$\sqrt{2}$x•$\sqrt{1+{y}^{2}}$
≤$\frac{\sqrt{2}}{2}$•$\frac{{(\sqrt{2}x)}^{2}+(\sqrt{1+{y}^{2}})^{2}}{2}$
=$\frac{\sqrt{2}}{2}$•$\frac{2{x}^{2}+{y}^{2}+1}{2}$
=$\frac{\sqrt{2}}{2}$•$\frac{2+1}{2}$=$\frac{3\sqrt{2}}{4}$
当且仅当$\sqrt{2}$x=$\sqrt{1+{y}^{2}}$即x=$\frac{\sqrt{3}}{2}$且y=$\frac{\sqrt{2}}{2}$时取等号,
∴x$\sqrt{1+{y}^{2}}$的最大值为$\frac{3\sqrt{2}}{4}$

点评 本题考查基本不等式求最值,变形为可用基本不等式的形式是解决问题的关键,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网