题目内容

平面角为锐角的二面角α-EF-β,A∈EF,AG?α,∠GAE=45°,若AG与β所成角为30°,求二面角α-EF-β的平面角.
分析:如图所示.过GH⊥β,垂足为H点,作HB⊥EF交EF于点B,连接AH、GB.则EF⊥BG,∠HBG是二面角α-EF-β的平面角.在Rt△AGH中,取GH=1,可得GA,在Rt△ABG中,可得BG.在Rt△GBH中,sin∠GBH=
GH
GB
即可得出.
解答:解:如图所示.
作GH⊥β,垂足为H点,作HB⊥EF交EF于点B,连接AH、GB.
则EF⊥BG,∠GAH=30°,∠HBG是二面角α-EF-β的平面角.
在Rt△AGH中,取GH=1,则AG=2.
在Rt△ABG中,∵∠BGA=45°,∴BG=
2

在Rt△GBH中,sin∠GBH=
GH
GB
=
1
2
=
2
2

∵∠GBH为锐角,∴∠GBH=45°.
点评:本题考查了二面角、线面角的作法和求法、线面垂直的判定与性质、三垂线定理及其逆定理等基础知识与基本技能方法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网