题目内容

数列{an}满足a1=2,an+1=
2n+1an
(n+
1
2
)an+2n
(n∈N*)

(1)设bn=
2n
an
,求数列{bn}的通项公式;
(2)设cn=
1
n(n+1)an+1
,数列{cn}的前n项和为Sn,求出Sn并由此证明:
5
16
Sn
1
2
分析:(1)利用数列递推式,结合条件,可得bn+1-bn=n+
1
2
,利用叠加法,可求数列{bn}的通项公式;
(2)确定数列的通项,利用叠加法求和,利用数列的单调性,即可得到结论.
解答:解:(1)∵an+1=
2n+1an
(n+
1
2
)an+2n
(n∈N*)

2n+1
an+1
-
2n
an
=n+
1
2

bn=
2n
an

∴bn+1-bn=n+
1
2

∴bn=b1+(b2-b1)+…+(bn-bn-1)=b1+
n2-1
2

bn=
2n
an
,a1=2,
∴b1=1
∴bn=
n2+1
2

(2)由(1)知,an=
2n+1
n2+1
,∴an+1=
2n+2
(n+1)2+1

cn=
1
n(n+1)an+1
=
1
2
[
1
2n+1
+
1
2n
-
1
(n+1)×2n+1
]
∴Sn=
1
2
×
1
22
(1-
1
2n
)
1-
1
2
+
1
2
[
1
2
-
1
(n+1)×2n+1
]
=
1
2
[1-(
1
2
)n+1×
n+2
n+1
]

(
1
2
)
n+1
×
n+2
n+1
=(
1
2
)
n+1
×(1+
1
n+1
)
得到递减,
(
1
2
)
n+1
×
n+2
n+1
(
1
2
)
1+1
×
1+2
1+1
=
3
8

5
16
1
2
[1-(
1
2
)
n+1
×
n+2
n+1
]<
1
2
,即
5
16
Sn
1
2
点评:本题考查数列的通项与求和,考查叠加法的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网