题目内容
求“方程的解”有如下解题思路:设,则在上单调递减,且,所以原方程有唯一解.类比上述解题思路,方程的解为 .
解析试题分析:类比上述解题思路,设f(x)=x3+x,由于f′(x)=3x2+1≥0,则f(x)在R上单调递增,
由x6+x2=(x+2)3+(x+2)即(x2)3+x2=(x+2)3+(x+2),∴x2=x+2,解之得,x=-1或x=2.
所以方程x6+x2=(x+2)3+(x+2)的解集为{-1,2}.故答案为:{-1,2}.
考点:类比
练习册系列答案
相关题目