题目内容
【题目】自新冠肺炎疫情发生以来,某社区积极防范,并利用网络对本社区居民进行新冠肺炎防御知识讲座,为了解该社区居民对防御知识的掌握情况,随机调查了该社区100人,统计得到如下列联表:
(1)请根据2x2列联表,判断是否有95%的把握认为防御知识掌握情况与年龄有关;
(2)为了进一步提高该社区的防御意识,该社区采用分层抽样的方法,从调查的完全掌握的居民中抽取10人,再从这10人中随机选取2人作为下一次讲座的讲解员,设X为这2人中年龄小于或等于50岁的人数,求的分布列与数学期望.
【答案】(1)有95%的把握认为防御知识掌握情况与年龄有关;(2)分布列见解析,.
【解析】
(1)计算,得到答案.
(2)根据分层抽样的比例关系得到人数,的可能取值为,计算概率得到分布列,计算数学期望得到答案.
(1)根据题意:,
故有95%的把握认为防御知识掌握情况与年龄有关.
(2)根据分层抽样:
年龄小于等于50岁的有人,年龄大于50岁的有人,
则的可能取值为,
则,,,
故分布列为:
故数学期望为.
【题目】将某公司200天的日销售收入(单位:万元)统计如下表(1)所示,
日销售收入 | ||||||
频数 | 12 | 28 | 36 | 54 | 50 | 20 |
频率 |
表(1)
(1)完成上述频率分布表,并估计公司这200天的日均销售收入(同一组中的数据用该组所在区间的中点值代表);
(2)已知该公司2020年第一、二季度的日销售收入如下表(2)所示,第三季度的日销售收入及其频率可用表(1)中的数据近似代替,且在2020年,当公司日销售收入为时,员工的日绩效为100元,当公司日销售收入为时,员工的日绩效为200元,当公司日销售收入为时,员工的日绩效为300元.以频率估计概率.
①若在第三季度某员工的工作日中随机抽取2天,记该员工2天的绩效之和为,求的分布列以及数学期望;
②若每个员工每个季度的工作日为50天,估计2020年前三个季度每个员工获得的绩效的总额.
日销售收入 | ||||||
频率 | 0.2 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 |
表(2)