ÌâÄ¿ÄÚÈÝ

11£®¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬ÈôÊýÁÐ{an}ͬʱÂú×ãÏÂÁÐÁ½¸öÌõ¼þ£¬Ôò³ÆÊýÁÐ{an}¾ßÓС°ÐÔÖÊm¡±£º
¢Ù$\frac{{{a_n}+{a_{n+2}}}}{2}£¼{a_{n+1}}$£»          
¢Ú´æÔÚʵÊýM£¬Ê¹µÃan¡ÜM³ÉÁ¢£®
£¨1£©ÊýÁÐ{an}¡¢{bn}ÖУ¬an=n£¨n¡ÊN*£©¡¢${b_n}=1-\frac{1}{n^2}$£¨n¡ÊN*£©£¬ÅжÏ{an}¡¢{bn}ÊÇ·ñ¾ßÓС°ÐÔÖÊm¡±£»
£¨2£©Èô¸÷ÏîΪÕýÊýµÄµÈ±ÈÊýÁÐ{cn}µÄǰnÏîºÍΪSn£¬ÇÒ${c_3}=\frac{1}{4}$£¬${S_3}=\frac{7}{4}$£¬Ö¤Ã÷£ºÊýÁÐ{Sn}¾ßÓС°ÐÔÖÊm¡±£¬²¢Ö¸³öMµÄȡֵ·¶Î§£»
£¨3£©ÈôÊýÁÐ{dn}µÄͨÏʽ${d_n}=\frac{{t\;£¨3•{2^n}-n£©+1}}{2^n}$£¨n¡ÊN*£©£®¶ÔÓÚÈÎÒâµÄn¡Ý3£¨n¡ÊN*£©£¬ÊýÁÐ{dn}¾ßÓС°ÐÔÖÊm¡±£¬ÇÒ¶ÔÂú×ãÌõ¼þµÄMµÄ×îСֵM0=9£¬ÇóÕûÊýtµÄÖµ£®

·ÖÎö £¨1£©ÓÉÓÚ$\frac{{a}_{n}+{a}_{n+2}}{2}$=an+1£¬²»Âú×ãÌõ¼þ¢Ù£¬Òò´Ë {an}²»¾ßÓС°ÐÔÖÊm¡±£»ÓÉÓÚ$\frac{{b}_{n}+{b}_{n+2}}{2}$=1-$\frac{{n}^{2}+2n+2}{{n}^{2}£¨n+2£©^{2}}$£¼1-$\frac{£¨n+1£©^{2}+1}{£¨n+1£©^{4}}$£¼1-$\frac{1}{£¨n+1£©^{2}}$=bn+1£¬ÓÖ${b_n}=1-\frac{1}{n^2}$£¼1£¨n¡ÊN*£©£¬¼´¿ÉÅжϳö£»
£¨2£©µÈ±ÈÊýÁÐ{cn}µÄ¹«±ÈΪq£¾0ÇÒq¡Ù1£¬ÓÉ${c_3}=\frac{1}{4}$£¬${S_3}=\frac{7}{4}$£¬¿ÉµÃ$\left\{\begin{array}{l}{{c}_{1}{q}^{2}=\frac{1}{4}}\\{\frac{{c}_{1}£¨1-{q}^{3}£©}{1-q}=\frac{7}{4}}\end{array}\right.$£¬½âµÃc1£¬q£®¿ÉµÃSn=2$£¨1-\frac{1}{{2}^{n}}£©$£®½ø¶øÑéÖ¤¼´¿ÉÖ¤Ã÷£®
£¨3£©¶ÔÓÚÈÎÒâµÄn¡Ý3£¨n¡ÊN*£©£¬ÊýÁÐ{dn}¾ßÓС°ÐÔÖÊm¡±£¬ÀûÓÃ$\frac{{d}_{n}+{d}_{n+2}}{2}$£¼dn+1£¬»¯Îª£ºt£¾$\frac{1}{n-2}$£¬¿ÉµÃt£¾1£®ÁíÒ»·½Ã棺$\frac{t£¨3•{2}^{n}-n£©+1}{{2}^{n}}$¡Ü9£¬¿ÉµÃt¡Ü3£¬¼´¿ÉµÃ³ö£®

½â´ð £¨1£©½â£º$\frac{{a}_{n}+{a}_{n+2}}{2}$=$\frac{n+n+2}{2}$=n+1=an+1£¬²»Âú×ãÌõ¼þ¢Ù£¬Òò´Ë {an}²»¾ßÓС°ÐÔÖÊm¡±£»
$\frac{{b}_{n}+{b}_{n+2}}{2}$=$\frac{1-\frac{1}{{n}^{2}}+1-\frac{1}{£¨n+2£©^{2}}}{2}$=1-$\frac{1}{2}£¨\frac{1}{{n}^{2}}+\frac{1}{£¨n+2£©^{2}}£©$=1-$\frac{{n}^{2}+2n+2}{{n}^{2}£¨n+2£©^{2}}$£¼1-$\frac{£¨n+1£©^{2}+1}{£¨n+1£©^{4}}$£¼1-$\frac{1}{£¨n+1£©^{2}}$=bn+1£¬Òò´Ë{bn}Âú×ãÌõ¼þ¢Ù£¬ÓÖ${b_n}=1-\frac{1}{n^2}$£¼1£¨n¡ÊN*£©£¬
Òò´Ë´æÔÚM=1£¬Ê¹µÃbn£¼M£¬×ÛÉϿɵÃ{bn}ÊÇ·ñ¾ßÓС°ÐÔÖÊm¡±£®
£¨2£©Ö¤Ã÷£ºµÈ±ÈÊýÁÐ{cn}µÄ¹«±ÈΪq£¾0ÇÒq¡Ù1£¬¡ß${c_3}=\frac{1}{4}$£¬${S_3}=\frac{7}{4}$£¬¡à$\left\{\begin{array}{l}{{c}_{1}{q}^{2}=\frac{1}{4}}\\{\frac{{c}_{1}£¨1-{q}^{3}£©}{1-q}=\frac{7}{4}}\end{array}\right.$£¬½âµÃc1=1£¬q=$\frac{1}{2}$£®
¡àSn=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$=2$£¨1-\frac{1}{{2}^{n}}£©$£®¡ß$\frac{{S}_{n}+{S}_{n+2}}{2}$=$\frac{2£¨1-\frac{1}{{2}^{n}}£©+2£¨1-\frac{1}{{2}^{n+2}}£©}{2}$=2$-\frac{1}{{2}^{n}}-\frac{1}{{2}^{n+2}}$=2-$\frac{5}{{2}^{n+2}}$$2-\frac{4}{{2}^{n+2}}$£¼2-$\frac{1}{{2}^{n}}$=Sn+1£¬¡àÊýÁÐ{Sn}Âú×ãÌõ¼þ¢Ù£®
ÓÖSn=2$£¨1-\frac{1}{{2}^{n}}£©$£¼2£¬¡à´æÔÚM=2£¬Ê¹µÃSn£¼M£¬ÊýÁÐ{Sn}Âú×ãÌõ¼þ¢Ú£®×ÛÉϿɵãºÊýÁÐ{Sn}¾ßÓС°ÐÔÖÊm¡±£¬MµÄȡֵ·¶Î§ÊÇ[2£¬+¡Þ£©£®
£¨3£©¶ÔÓÚÈÎÒâµÄn¡Ý3£¨n¡ÊN*£©£¬ÊýÁÐ{dn}¾ßÓС°ÐÔÖÊm¡±£¬
¡à$\frac{{d}_{n}+{d}_{n+2}}{2}$£¼dn+1£¬»¯Îª£ºt£¾$\frac{1}{n-2}$£¬¡àt£¾1£®
ÁíÒ»·½Ã棺$\frac{t£¨3•{2}^{n}-n£©+1}{{2}^{n}}$¡Ü9£¬
¡à$t¡Ü\frac{9¡Á{2}^{n}-1}{3¡Á{2}^{n}-n}$=3+$\frac{3n-1}{3¡Á{2}^{n}-n}$£¬¡àt¡Ü3£¬
¡à1£¼t¡Ü3£¬
¡àÕûÊýt=2£¬3£®

µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ¼°ÆäǰnÏîºÍ¹«Ê½¡¢²»µÈʽµÄÐÔÖÊ¡¢Ð¶¨Òå¡¢ÓнçÊýÁУ¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø