题目内容

(本小题满分12分)

如图,在四棱锥P-ABCD中,PB⊥底面,CD⊥PD,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,点E在棱PA上,且PE=2EA。(1)求异面直线PA与CD所成的角;(2)求证:PC∥平面EBD;(3)求二面角A-BE-D的大小。

(Ⅰ) ∠PAF=60° (Ⅱ)   略  (3)


解析:

解法一:(1)由PB⊥面ABCD,CD⊥PD知CD⊥BD

在直角梯形ABCD中,AD⊥AB,AB=AD=3,

∴BD=,BC=6

取BC的中点F,连结AF,则AF∥CD,

∴PA与CD所成的角就是∠PAF   (4分)

连PF由题设易知AF=PF=PA=,

∴∠PAF=60°即为所求     (6分)

(2)连AC交BD于G,连EG,易知,

,∴PC∥EG,又EG面EBD,∴PC∥面EBD  (10分)

(3)∵PB⊥面ABCD,∴AD⊥PB,又AD⊥AB,∴AD⊥面EAB

作AH⊥BE于H,连DH,则DH⊥BE,   (12分)

在△AEB中,易求得BE=

△DAH中,

即所求二面角的大小为  (14分)

解法二:(1)如图建立空间直角坐标系,设

则A(0,3,0),P(0,0,3)D(3,3,0),C(,0,0),=,∴,即:3(3-)+9=0  (2分)

,即异面直线PA与CD所成的交为60°            (6分)

(2)设平面BED的法向量为  ∵

,∴       (12分)

又由(1)知,∴,∴PC∥面EBD  (10分)

(3)由(2)知

又平面ABE的法向量

故所求二面角的大小为                                 (14分)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网