题目内容
(本题14分)数列的首项。(1)求证是等比数列,并求的通项公式;(2)已知函数是偶函数,且对任意均有,当 时,,求使恒成立的的取值范围。
(1)(2)
解析
(本题14分)数列的各项均为正数,为其前项和,对于任意总有 成等差数列。(1)求的通项公式;(2)设数列的前项和为,且,求证对任意的实数和任意的整数总有;(3)正数数列中,,求数列的最大项。
(本题满分14分)
数列的前项和为,,,等差数列满足,
。
(1)分别求数列,的通项公式;
(2)若对任意的,恒成立,求实数的取值范围。
(本题14分)数列的各项均为正数,为其前项和,对于任意总有 成等差数列。
(1)求的通项公式;
(2)设数列的前项和为,且,求证对任意的实数和任意的整数总有;
(3)正数数列中,,求数列的最大项。
(本题14分)数列的首项。
(1)求证是等比数列,并求的通项公式;
(2)已知函数是偶函数,且对任意均有,当 时,,求使恒成立的的取值范围。