题目内容
【题目】已知函数的定义域为且满足,当时,.
(1)判断在上的单调性并加以证明;
(2)若方程有实数根,则称为函数的一个不动点,设正数为函数的一个不动点,且,求的取值范围.
【答案】(1) 单调递减. 见解析 (2) (或).
【解析】
(1)根据已知条件,构造函数,可证在上单调递减.,再通过的奇偶性,可得出在上单调递减,即可判断在上的单调性;
(2)转为为(1)中的两个函数值,利用的单调性,求出的范围,再根据不动点的定义转化为在有解,,分离参数,转化为研究与函数在有交点,通过两次求导得出在单调性,即可求出在的范围.
(1)令,则,
∵当时,,∴,
∴在上单调递减,又∵,
∴,
∴为奇函数,∴在上单调递减.
又∵在上单调递减,
∴在上单调递减.
(2)由(1)可知,在上单调递减.
∵,∴,
∴,故.
∵正数为函数上的一个不动点,∴方程在上有解,
即方程在上有解,
整理得:.
令,,
设,,则,
∴在上单调递增,又,
∴,∴,
∴在上单调递减,
∴(或),
即的取值范围是(或).
练习册系列答案
相关题目