题目内容

已知函数f(x)=
3-x
+
1
x+2
的定义域为集合A,B={x|x<a}.
(1)若A⊆B,求实数a的取值范围;
(2)若全集U={x|x≤4},a=-1,求?UA及A∩(?UB).
分析:(1)首先求出集合A,根据A⊆B,利用子集的概念,考虑集合端点值列式求得a的范围;
(2)直接运用补集及交集的概念进行求解.
解答:解:(1)要使函数f(x)=
3-x
+
1
x+2
有意义,则
3-x≥0
x+2>0
,解得:-2<x≤3.
所以,A={x|-2<x≤3}.
又因为B={x|x<a},要使A⊆B,则a>3.

(2)因为U={x|x≤4},A={x|-2<x≤3},所以CUA={x|x≤-2或3<x≤4}.
又因为a=-1,所以B={x|x<-1}.
所以CUB={-1≤x≤4},所以,A∩(CUB)=A={x|-2<x≤3}∩{-1≤x≤4}={x|-1≤x≤3}.
点评:本题考查了函数的定义域及其求法,考查了交集和补集的混合运算,求解集合的运算时,利用数轴分析能起到事半功倍的效果,此题是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网