题目内容

已知函数是自然对数的底数).
(1)若曲线处的切线也是抛物线的切线,求的值;
(2)当时,是否存在,使曲线在点处的切线斜率与 在
上的最小值相等?若存在,求符合条件的的个数;若不存在,请说明理由.

(1);(2).

解析试题分析:(1)对处求导,求出切线方程,与抛物线方程联立,根据可求解;(2)求导解出的最小值为1,对曲线C求导,令导函数为1,得到方程,构造新函数,用求导方法判断其零点个数,得解.
试题解析:(1),                                         1分
所以在处的切线为
即:                                                      2分
联立,消去
知,.                                    4分
(2)当时,令 得 






 
 
 

单调递减
极小值 
单调递增
                                                          6分

,                         7分
假设存在实数
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网