题目内容

7.在数列{an}中,a1=1,an+2+ancosnπ=1,记Sn是数列{an}的前n项和,则$\frac{{S}_{120}}{{a}_{61}}$等于(  )
A.930B.1520C.60D.61

分析 由an+2+ancosnπ=1,当n=2k-1时,k∈Z,a2k+1-a2k-1=1,可得数列{a2k-1}是首项为1,公差为1的等差数列.当n=2k时,k∈Z,a2k+2+a2k=1.可得S120.又a61=31,即可得出.

解答 解:由an+2+ancosnπ=1,当n=2k-1时,k∈Z,a2k+1-a2k-1=1,∴数列{a2k-1}是首项为1,公差为1的等差数列.
∴a1+a3+…+a119=$\frac{(1+60)×60}{2}$=1830.
当n=2k时,k∈Z,a2k+2+a2k=1.
∴a2+a4+…+a120=(a2+a4)+(a6+a8)+…+(a118+a120)=30.
∴S120=1830+30=1860.
又a61=a2×30+1=1+30=31,
∴$\frac{{S}_{120}}{{a}_{61}}$=$\frac{1860}{31}$=60.
故选:C.

点评 本题考查了等差数列的定义及其前n项和公式、“分组求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网