题目内容
某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为,第二、第三门课程取得优秀成绩的概率分别为,(>),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;
(Ⅱ)求,的值;
(Ⅲ)求数学期望ξ.
ξ | 0 | 1 | 2 | 3 |
b |
(Ⅱ)求,的值;
(Ⅲ)求数学期望ξ.
(I),(II),.(III)
(1)可根据其对立事件来求:其对立事件为:没有一门课程取得优秀成绩.
(2)
建立关于p、q的方程,解方程组即可求解.
(3)先算出a,b的值,然后利用期望公式求解即可.
事件表示“该生第门课程取得优秀成绩”,=1,2,3,由题意知
,,
(I)由于事件“该生至少有1门课程取得优秀成绩”与事件“”是对立的,所以该生至少有1门课程取得优秀成绩的概率是
,
(II)由题意知
整理得 ,由,可得,.
(III)由题意知
=
=
=
(2)
建立关于p、q的方程,解方程组即可求解.
(3)先算出a,b的值,然后利用期望公式求解即可.
事件表示“该生第门课程取得优秀成绩”,=1,2,3,由题意知
,,
(I)由于事件“该生至少有1门课程取得优秀成绩”与事件“”是对立的,所以该生至少有1门课程取得优秀成绩的概率是
,
(II)由题意知
整理得 ,由,可得,.
(III)由题意知
=
=
=
练习册系列答案
相关题目