题目内容

椭圆的离心率为,且过点直线与椭圆M交于A、C两点,直线与椭圆M交于B、D两点,四边形ABCD是平行四边形
(1)求椭圆M的方程;
(2)求证:平行四边形ABCD的对角线AC和BD相交于原点O;
(3)若平行四边形ABCD为菱形,求菱形ABCD的面积的最小值

(1);(2)详见解析;(3)最小值为

解析试题分析:(1)依题意有,再加上,解此方程组即可得的值,从而得椭圆 的方程(2)由于四边形ABCD是平行四边形,所以ABCD的对角线AC和BD的中点重合
利用(1)所得椭圆方程,联立方程组消去得:,显然点A、C的横坐标是这个方程的两个根,由此可得线段的中点为 同理可得线段的中点为,由于中点重合,所以,解得:(舍)这说明都过原点即相交于原点(3)由于对角线过原点且该四边形为菱形,所以其面积为由方程组易得点A的坐标(用表示),从而得(用表示);同理可得(由于,故仍可用表示)这样就可将表示为的函数,从而求得其最小值
试题解析:(1)依题意有,又因为,所以得
故椭圆的方程为                                    3分
(2)依题意,点满足
所以是方程的两个根

所以线段的中点为 
同理,所以线段的中点为         5分
因为四边形是平行四边形,所以
解得,(舍)
即平行四边形的对角线相交于原点                7分
(3)点满足
所以是方程的两个根,即

同理,                     9分
又因为,所以,其中
从而菱形的面积

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网