题目内容
【题目】如图所示,已知AB为圆O的直径,且AB=4,点D为线段AB上一点,且,点C为圆O上一点,且.点P在圆O所在平面上的正投影为点D,PD=DB.
(1)求证:CD⊥平面PAB;
(2)求直线PC与平面PAB所成的角.
【答案】(1)见解析;(2)
【解析】
(1)连接CO,由题意可得△ACO为等边三角形,即得CD⊥AO,再由题意得PD⊥CD,即证得CD⊥平面PAB
(2)由(1)知∠CPD是直线PC与平面PAB所成的角,在三角形中结合各边长解三角形即可求出结果
(1)证明:连接CO,
由3AD=DB知,点D为AO的中点.
又因为AB为圆O的直径,所以AC⊥CB.
由AC=BC知,∠CAB=60°,
所以△ACO为等边三角形.故CD⊥AO.
因为点P在圆O所在平面上的正投影为点D,
所以PD⊥平面ABC,又CD平面ABC,所以PD⊥CD,
由PD平面PAB,AO平面PAB,且PD∩AO=D,
得CD⊥平面PAB.
(2)由(1)知∠CPD是直线PC与平面PAB所成的角,
又△AOC是边长为2的正三角形,所以CD=.
在Rt△PCD中,PD=DB=3,CD=,
所以,∠CPD=30°,
即直线PC与平面PAB所成的角为30°.
练习册系列答案
相关题目