题目内容

【题目】公差不为0的等差数列{an}的部分项ak1,ak2,ak3,…构成等比数列,且k1=1,k2=2,k3=6,则k4=________.

【答案】22

【解析】根据题意可知等差数列的a1,a2,a6项成等比数列,设等差数列的公差为d,则有(a1+d)2=a1(a1+5d),解得d=3a1,故a2=4a1,a6=16a1ak4=a1+(n-1)·(3a1)=64a1,解得n=22,即k4=22.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网