题目内容

【题目】定义:在数列中,若为常数)则称为“等方差数列”,下列是对“等方差数列”的有关判断( )

①若是“等方差数列”,在数列 是等差数列;

是“等方差数列”;

③若是“等方差数列”,则数列为常)也是“等方差数列”;

④若既是“等方差数列”又是等差数列,则该数列是常数数列.

其中正确命题的个数为( )

A. B. C. D.

【答案】B

【解析】①:可以举反例。如an=0时数列不存在,所以①错误

②:对数列{(2)n}不是常数,所以②错误

③:对数列{akn}

k,p均为常数,所以数列{akn}也是“等方差数列”,所以③正确

④:设数列{an}首项a1,公差为d则有a2=a1+d,a3=a1+2d,所以有(a1+d)2a21=p,且(a1+2d)2(a1+d)2=p,所以得d2+2a1d=p,3d2+2a1d=p,两式相减得d=0,所以此数列为常数数列,所以④正确。

本题选择B选项.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网