题目内容
1已知函数满足:,,则
。
16
=2,且
==16
已知函数的图象经过点A(0,1),B,且当时,
取最大值.
(1)求的解析式;
(2)是否存在向量,使得将的图象按向量平移后可以得到一个奇函数的图象?若存在,求出满足条件的一个,若不存在,说明理由.
已知,满足, 且目标函数的最大值为7,最小值为1,则 ( )
A.1 B. C.2 D.
已知函数,当时,函数取得极大值.
(1)求实数的值;
(2)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有;
(3)已知正数,满足,求证:当,时,对任意大于,且互不相等的实数,都有.
(1)分别写出x∈[0,1)时y=f(x)的解析式f1(x)和x∈[1,2)时y=f(x)的解析式f2(x);并猜想x∈[n,n+1],n≥-1,n∈Z时y=f(x)的解析式f n+1(x)(用x和n表示)(不必证明);
(2)当x=n+ (n≥-1,n∈Z)时,y=f n+1(x)x∈[n,n+1),(n≥-1,n∈Z)的图象上有点列A n+1(x,f(x))和点列B n+1(n+1,f(n+1)),线段A n+1B n+2与线段B n+1A n+2的交点C n+1,求点C n+1的坐标(a n+1(x),b n+1(x));
(3)在前面(1)(2)的基础上,请你提出一个点列C n+1(a n+1(x),b n+1(x))的问题,并进行研究,并写下你研究的过程.