ÌâÄ¿ÄÚÈÝ
ÃüÌ⣺
¢ÙÉè
¡¢
¡¢
ÊÇ»¥²»¹²ÏߵķÇÁãÏòÁ¿£¬Ôò£¨
•
£©
-£¨
•
£©
=
£»
¢Ú¡°a=1¡±ÊÇ¡°º¯Êýf£¨x£©=lg£¨ax+1£©ÔÚ£¨0£¬+¡Þ£©µ¥µ÷µÝÔö¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
¢ÛÒÑÖª¦Á£¬¦Â¡ÊR£¬Ôò¡°¦Á=¦Â¡±ÊÇ¡°tan¦Á=tan¦Â¡±µÄ³äÒªÌõ¼þ£»
¢Üº¯Êýf£¨x£©=2x-x2µÄÔÚ£¨1£¬3£©ÉÏÖÁÉÙÒ»¸öÁãµã£»
¢Ý
(x-2)¡Ý0µÄ½â¼¯Îª[2£¬+¡Þ£©£»
¢Þº¯Êýy=x3ÔÚx=0´¦ÇÐÏß²»´æÔÚ£®
ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
¢ÙÉè
a |
b |
c |
a |
b |
c |
c |
a |
b |
0 |
¢Ú¡°a=1¡±ÊÇ¡°º¯Êýf£¨x£©=lg£¨ax+1£©ÔÚ£¨0£¬+¡Þ£©µ¥µ÷µÝÔö¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
¢ÛÒÑÖª¦Á£¬¦Â¡ÊR£¬Ôò¡°¦Á=¦Â¡±ÊÇ¡°tan¦Á=tan¦Â¡±µÄ³äÒªÌõ¼þ£»
¢Üº¯Êýf£¨x£©=2x-x2µÄÔÚ£¨1£¬3£©ÉÏÖÁÉÙÒ»¸öÁãµã£»
¢Ý
x-1 |
¢Þº¯Êýy=x3ÔÚx=0´¦ÇÐÏß²»´æÔÚ£®
ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®1 | B£®2 | C£®3 | D£®4 |
¢Ù¼ÙÉ裨
•
£©
-£¨
•
£©
=
ÕýÈ·£¬Ôò(
•
)
=(
•
)
£¬Èô
•
Óë
•
²»È«Îª0£¬ÔòÏòÁ¿
Óë
¹²Ïߣ¬ÓëÒÑÖª
¡¢
¡¢
ÊÇ»¥²»¹²ÏߵķÇÁãÏòÁ¿Ã¬¶Ü£¬Òò´Ë²»ÕýÈ·£»
¢Úµ±a=1ʱ£¬º¯Êýf£¨x£©=lg£¨x+1£©ÔÚ£¨0£¬+¡Þ£©µ¥µ÷µÝÔö£»Èôº¯Êýf£¨x£©=lg£¨ax+1£©ÔÚ£¨0£¬+¡Þ£©µ¥µ÷µÝÔö£¬Ôòa£¾0£®¹Ê¡°a=1¡±ÊÇ¡°º¯Êýf£¨x£©=lg£¨ax+1£©ÔÚ£¨0£¬+¡Þ£©µ¥µ÷µÝÔö¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£¬Òò´ËÕýÈ·£»
¢ÛÓÉ¡°¦Á=¦Â=k¦Ð+
¡±ÍƲ»³ö¡°tan¦Á=tan¦Â¡±£»·´Ö®Ò²²»³ÉÁ¢£¬Èçtan
=tan(
+¦Ð)£¬µ«ÊÇ
¡Ù
£®Òò´ËÔò¡°¦Á=¦Â¡±ÊÇ¡°tan¦Á=tan¦Â¡±µÄ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ£»
¢Ü¡ßf£¨1£©f£¨3£©=£¨2-1£©¡Á£¨8-9£©£¼0£¬¡àº¯Êýf£¨x£©=2x-x2µÄÔÚ£¨1£¬3£©ÉÏÖÁÉÙÒ»¸öÁãµã£¬¹ÊÕýÈ·£»
¢Ýµ±x=1ʱ£¬Âú×ã
(x-2)¡Ý0£»µ±x£¾1ʱ£¬Ô²»µÈʽ¿É»¯Îªx-2¡Ý0£¬½âµÃx¡Ý2£®×ÛÉÏ¿ÉÖª£ºÔ²»µÈʽµÄ½â¼¯Îª{1}¡È[2£¬+¡Þ£©£¬¹Ê¢Ý²»ÕýÈ·£»
¢Þ¡ßy¡ä=3x2£¬¡àf¡ä£¨0£©=0£¬¹Êº¯Êýy=x3ÔÚx=0´¦ÇÐÏßΪxÖᣮÒò´Ë¢Þ²»ÕýÈ·£®
×ÛÉÏ¿ÉÖª£ºÖ»ÓТڢÜÕýÈ·£¬¼´ÕýÈ·ÃüÌâµÄ¸öÊýΪ2£®
¹ÊÑ¡B£®
a |
b |
c |
c |
a |
b |
0 |
a |
b |
c |
c |
a |
b |
a |
b |
c |
a |
c |
b |
a |
b |
c |
¢Úµ±a=1ʱ£¬º¯Êýf£¨x£©=lg£¨x+1£©ÔÚ£¨0£¬+¡Þ£©µ¥µ÷µÝÔö£»Èôº¯Êýf£¨x£©=lg£¨ax+1£©ÔÚ£¨0£¬+¡Þ£©µ¥µ÷µÝÔö£¬Ôòa£¾0£®¹Ê¡°a=1¡±ÊÇ¡°º¯Êýf£¨x£©=lg£¨ax+1£©ÔÚ£¨0£¬+¡Þ£©µ¥µ÷µÝÔö¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£¬Òò´ËÕýÈ·£»
¢ÛÓÉ¡°¦Á=¦Â=k¦Ð+
¦Ð |
2 |
¦Ð |
4 |
¦Ð |
4 |
¦Ð |
4 |
5¦Ð |
4 |
¢Ü¡ßf£¨1£©f£¨3£©=£¨2-1£©¡Á£¨8-9£©£¼0£¬¡àº¯Êýf£¨x£©=2x-x2µÄÔÚ£¨1£¬3£©ÉÏÖÁÉÙÒ»¸öÁãµã£¬¹ÊÕýÈ·£»
¢Ýµ±x=1ʱ£¬Âú×ã
x-1 |
¢Þ¡ßy¡ä=3x2£¬¡àf¡ä£¨0£©=0£¬¹Êº¯Êýy=x3ÔÚx=0´¦ÇÐÏßΪxÖᣮÒò´Ë¢Þ²»ÕýÈ·£®
×ÛÉÏ¿ÉÖª£ºÖ»ÓТڢÜÕýÈ·£¬¼´ÕýÈ·ÃüÌâµÄ¸öÊýΪ2£®
¹ÊÑ¡B£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿