题目内容
已知抛物线y2=2px(p>0)与双曲线=1(a>0,b>0)有相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,则双曲线的离心率为 ( )
A.+2 | B.+1 | C.+1 | D.+1 |
D
解析试题分析:根据题意可知抛物线的焦点,准线方程,于是由AF⊥x轴并结合抛物线定义可得,对于双曲线,设是其左焦点,根据勾股定理可得,由定义,所以,即.
考点:抛物线、双曲线的定义,勾股定理.
练习册系列答案
相关题目
已知直线和直线,抛物线上一动点P到直线和直线的距离之和的最小值是( )
A. | B.2 | C. | D.3 |
设双曲线的左、右焦点分别为是双曲线渐近线上的一点,,原点到直线的距离为,则渐近线的斜率为 ( )
A.或 | B.或 | C.1或 | D.或 |
已知抛物线的顶点在原点,焦点在y轴上,抛物线上的点到焦点的距离为4,则的值为( )
A.4 | B.-2 | C.4或-4 | D.12或-2 |
已知实数构成一个等比数列,则圆锥曲线的离心率为 ( )
A. | B. | C.或 | D.或7 |
已知抛物线的焦点恰为双曲线的右焦点,且两曲线交点的连线过点,则双曲线的离心率为 ( )
A. | B. | C. | D. |
已知点是双曲线的左右焦点,点是双曲线上的一点,且,则面积为 ( )
A. | B. | C. | D. |