题目内容

15.已知数列{an}满足a1=$\frac{1}{2}$,$\frac{{{a_{n+1}}}}{{{a_{n+1}}-1}}$-$\frac{1}{{{a_n}-1}}$=0,n∈N*
(1)求证:数列{$\frac{1}{{{a_n}-1}}$}是等差数列;
(2)设bn=$\frac{{{a_{n+1}}}}{a_n}$-1,数列{bn}的前n项之和为Sn,求证:Sn<$\frac{3}{4}$.

分析 (1)把已知的数列递推式变形,得到${a}_{n+1}=\frac{1}{2-{a}_{n}}$,然后代入$\frac{1}{{a}_{n+1}-1}-\frac{1}{{a}_{n}-1}$即可得到答案;
(2)由(1)中的等差数列求出数列{an}的通项公式,代入bn=$\frac{{{a_{n+1}}}}{a_n}$-1并整理,然后利用裂项相消法求数列{bn}的前n项和后得答案.

解答 证明:(1)由$\frac{{{a_{n+1}}}}{{{a_{n+1}}-1}}$-$\frac{1}{{{a_n}-1}}$=0,得$\frac{{{a_{n+1}}}}{{{a_{n+1}}-1}}$=$\frac{1}{{{a_n}-1}}$,
∴$\frac{{a}_{n+1}-1}{{a}_{n+1}}={a}_{n}-1$,即$1-\frac{1}{{a}_{n+1}}={a}_{n}-1$,∴${a}_{n+1}=\frac{1}{2-{a}_{n}}$.
则$\frac{1}{{a}_{n+1}-1}-\frac{1}{{a}_{n}-1}=\frac{1}{\frac{1}{2-{a}_{n}}-1}-\frac{1}{{a}_{n}-1}$=$\frac{1-{a}_{n}}{{a}_{n}-1}=-1$.
∴数列{$\frac{1}{{{a_n}-1}}$}是以-1为公差的等差数列;
(2)由数列{$\frac{1}{{{a_n}-1}}$}是以-1为公差的等差数列,且$\frac{1}{{a}_{1}-1}=\frac{1}{\frac{1}{2}-1}=-2$,
∴$\frac{1}{{a}_{n}-1}=-2-(n-1)=-(n+1)$,则${a}_{n}=\frac{n}{n+1}$.
bn=$\frac{{{a_{n+1}}}}{a_n}$-1=$\frac{\frac{n+1}{n+2}}{\frac{n}{n+1}}-1=\frac{1}{n(n+2)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.
Sn=b1+b2+…+bn=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n-1}-\frac{1}{n+1}+\frac{1}{n}-\frac{1}{n+2})$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{3}{4}-\frac{1}{2(n+1)}-\frac{1}{2(n+2)}<\frac{3}{4}$.

点评 本题考查了数列递推式,考查了等差关系的确定,训练了裂项相消法求数列的和,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网