题目内容

椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
2
3
,A、B是椭圆上关于x、y轴均不对称的两点,线段AB的垂直平分线与x轴交于点P(1,0),设AB的中点为C(x0,y0),则x0的值为(  )
A、
9
5
B、
9
4
C、
4
9
D、
5
9
分析:本题涉及到垂直平分线,与斜率和中点有关,所以先由A、B是椭圆上关于x、y轴均不对称的两点得到:
x12
a2
+
y12
b2
=1
x22
a2
+
y22
b2
=1
②两式作差得到斜率与中点的关系,再由线段AB的垂直平分线与x轴交于点P(1,0),转化斜率
y1-y2
x1-y1
= -
x0-1
y0
转化为:-
b2x0
a2y0
 = -
x0-1
y0
求解.
解答:解:∵A(x1,y1)、B(x2,y2)是椭圆上关于x、y轴均不对称的两点
x12
a2
+
y12
b2
=1
x22
a2
+
y22
b2
=1

由①-②得:
y1-y2
x1-y1
=-
b2(x1+x2)
a2(y1+y2)
=
b2x0
a2y0

∵线段AB的垂直平分线与x轴交于点P(1,0),
y1-y2
x1-y1
= -
x0-1
y0

-
b2x0
a2y0
 = -
x0-1
y0

解得:x0=
a2
c2
=
9
4

故选B.
点评:本题主要考查直线与椭圆的位置关系及方程的应用,这里主要涉及了线段的垂直平分线,用点差法寻求斜率与中点的关系的问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网