题目内容
设 A(x1,y1)、B(x2,y2)是椭圆x2 |
a2 |
y2 |
b2 |
m |
x1 |
a |
y1 |
b |
n |
x2 |
a |
y2 |
b |
m |
n |
(1)若A点坐标为(a,0),求点B的坐标;
(2)设
OM |
OA |
OB |
(3)若点P、Q为椭圆 上的两点,且
PQ |
OB |
分析:(1)将x1=a,y1=0代入(
,
)•(
,
)=0,得(1,0)•(
,
)=0,由此能求出点B的坐标.
(2)因(
,
)•(
,
)=0,所以
+
=0,又因A(x1,y1),B(x2,y2)在椭圆上,所以
+
=1,
+
=1
=cosθ
+sinθ
=(x1cosθ+x2sinθ,y1cosθ+y2sinθ),由此能够证明所以点M在椭圆上.
(3)设点P(m1,n1)Q(m2,n2),则
=(m2-m1,n2-n1),且
+
=1,
+
=1,所以
+
=0,故
⊥(
,
),由此能够导出线段PQ被直线OA平分.
x1 |
a |
y1 |
b |
x2 |
a |
y2 |
b |
x2 |
a |
y2 |
b |
(2)因(
x1 |
a |
y1 |
b |
x2 |
a |
y2 |
b |
x1x2 |
a2 |
y1y2 |
b2 |
x12 |
a2 |
y12 |
b2 |
x22 |
a2 |
y22 |
b2 |
OM |
OA |
OB |
(3)设点P(m1,n1)Q(m2,n2),则
PQ |
| ||
a2 |
| ||
b2 |
| ||
a2 |
| ||
b2 |
(m1-m2)(m1+m2) |
a2 |
(n1-n2)(n1+n2) |
b2 |
PQ |
m1+m2 |
a2 |
n1+n2 |
b2 |
解答:解:(1)将x1=a,y1=0代入(
,
)•(
,
)=0,得(1,0)•(
,
)=0,
所以x2=0,y2=±b,即点B的坐标为(0,±b).
(2)因(
,
)•(
,
)=0,所以
+
=0,
又因A(x1,y1),B(x2,y2)在椭圆上,所以
+
=1,
+
=1
=cosθ
+sinθ
=(x1cosθ+x2sinθ,y1cosθ+y2sinθ)
把M点坐标代入椭圆方程左边得:
+
=
+
+2sinθcosθ(
+
)=cos2θ+sin2θ+2sinθcosθ×0=1所以点M在椭圆上.
(3)设点P(m1,n1)Q(m2,n2),则
=(m2-m1,n2-n1)
且
+
=1,
+
=1
所以
+
=0,
故有(m1-m2,n1-n2)•(
,
)=0
即
⊥(
,
)
又
∥
,而
=(x2,y2),得(x2,y2)•(
,
)=0(A)
又由
+
=0,得(x2,y2)•(
,
)=0,(B)
所以由(A)(B)得(
,
)=λ(
,
),
即(
,
)=
(x1,y1)
故线段PQ被直线OA平分.
x1 |
a |
y1 |
b |
x2 |
a |
y2 |
b |
x2 |
a |
y2 |
b |
所以x2=0,y2=±b,即点B的坐标为(0,±b).
(2)因(
x1 |
a |
y1 |
b |
x2 |
a |
y2 |
b |
x1x2 |
a2 |
y1y2 |
b2 |
又因A(x1,y1),B(x2,y2)在椭圆上,所以
x12 |
a2 |
y12 |
b2 |
x22 |
a2 |
y22 |
b2 |
OM |
OA |
OB |
把M点坐标代入椭圆方程左边得:
(x1cosθ+x2sinθ)2 |
a2 |
(y1cosθ+sinθ)2 |
b2 |
x12cos2θ+x22sin2θ |
a2 |
y12cos2θ+y22sin2θ |
b2 |
x1x2 |
a2 |
y2y2 |
b2 |
(3)设点P(m1,n1)Q(m2,n2),则
PQ |
且
| ||
a2 |
| ||
b2 |
| ||
a2 |
| ||
b2 |
所以
(m1-m2)(m1+m2) |
a2 |
(n1-n2)(n1+n2) |
b2 |
故有(m1-m2,n1-n2)•(
m1+m2 |
a2 |
n1+n2 |
b2 |
即
PQ |
m1+m2 |
a2 |
n1+n2 |
b2 |
又
PQ |
OB |
OB |
m1+m2 |
a2 |
n1+n2 |
b2 |
又由
x1x2 |
a2 |
y1y2 |
b2 |
x1 |
a2 |
y1 |
b2 |
所以由(A)(B)得(
m1+m2 |
a2 |
n1+n2 |
b2 |
x1 |
a2 |
y1 |
b2 |
即(
m1+m2 |
2 |
n1+n2 |
2 |
λ |
2 |
故线段PQ被直线OA平分.
点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,注意合理地进行等价转化.
练习册系列答案
相关题目