题目内容

设 A(x1,y1)、B(x2,y2)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的两点,O为坐标原点,向量
m
=(
x1
a
y1
b
),
n
=(
x2
a
y2
b
)
m
n
=0

(1)若A点坐标为(a,0),求点B的坐标;
(2)设
OM
=cosθ•
OA
+sinθ•
OB
,证明点M在椭圆上;
(3)若点P、Q为椭圆 上的两点,且
PQ
OB
,试问:线段PQ能否被直线OA平分?若能平分,请加以证明;若不能平分,请说明理由.
分析:(1)将x1=a,y1=0代入(
x1
a
y1
b 
)•(
x2
a
y2
b 
)=0,得(1,0)•(
x2
a
y2
b 
)=0,由此能求出点B的坐标.
(2)因(
x1
a
y1
b 
)•(
x2
a
y2
b 
)=0,所以
x1x2
a2
+
y1y2
b2
=0
,又因A(x1,y1),B(x2,y2)在椭圆上,所以
x12
a2
+
y12
b2
=1
x22
a2
+
y22
b2
=1
OM
=cosθ
OA
+sinθ
OB
=(x1cosθ+x2sinθ,y1cosθ+y2sinθ),由此能够证明所以点M在椭圆上.
(3)设点P(m1,n1)Q(m2,n2),则
PQ
=(m2-m1n2-n1)
,且
m
2
1
a2
+
n
2
1
b2
=1
m
2
2
a2
+
n
2
2
b2
=1
,所以
(m1-m2)(m1+m2)
a2
+
(n1-n2)(n1+n2)
b2
=0
,故
PQ
⊥(
m1+m2
a2
n1+n2
b2
)
,由此能够导出线段PQ被直线OA平分.
解答:解:(1)将x1=a,y1=0代入(
x1
a
y1
b 
)•(
x2
a
y2
b 
)=0,得(1,0)•(
x2
a
y2
b 
)=0,
所以x2=0,y2=±b,即点B的坐标为(0,±b).
(2)因(
x1
a
y1
b 
)•(
x2
a
y2
b 
)=0,所以
x1x2
a2
+
y1y2
b2
=0

又因A(x1,y1),B(x2,y2)在椭圆上,所以
x12
a2
+
y12
b2
=1
x22
a2
+
y22
b2
=1
OM
=cosθ
OA
+sinθ
OB
=(x1cosθ+x2sinθ,y1cosθ+y2sinθ)
把M点坐标代入椭圆方程左边得:
(x1cosθ+x2sinθ)2
a2
+
(y1cosθ+sinθ)2
b2
=
x12cos2θ+x22sin2θ
a2
+
y12cos2θ+y22sin2θ
b2
+2sinθcosθ(
x1x2
a2
+
y2y2
b2
)
=cos2θ+sin2θ+2sinθcosθ×0=1所以点M在椭圆上.
(3)设点P(m1,n1)Q(m2,n2),则
PQ
=(m2-m1n2-n1)

m
2
1
a2
+
n
2
1
b2
=1
m
2
2
a2
+
n
2
2
b2
=1

所以
(m1-m2)(m1+m2)
a2
+
(n1-n2)(n1+n2)
b2
=0

故有(m1-m2n1-n2)•(
m1+m2
a2
n1+n2
b2
)=0

PQ
⊥(
m1+m2
a2
n1+n2
b2
)

PQ
OB
,而
OB
=(x2y2)
,得(x2y2)•(
m1+m2
a2
n1+n2
b2
)=0
(A)
又由
x1x2
a2
+
y1y2
b2
=0
,得(x2y2)•(
x1
a2
y1
b2
)=0
,(B)
所以由(A)(B)得(
m1+m2
a2
n1+n2
b2
)=λ(
x1
a2
y1
b2
)

(
m1+m2
2
n1+n2
2
)=
λ
2
(x1y1)

故线段PQ被直线OA平分.
点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网