题目内容
【题目】如图,椭圆的左、右顶点分别为,,上、下顶点分别为,,且,为等边三角形,过点的直线与椭圆在轴右侧的部分交于、两点.
(1)求椭圆的标准方程;
(2)求四边形面积的取值范围.
【答案】(1);(2).
【解析】
(1)根据坐标和为等边三角形可得,进而得到椭圆方程;
(2)①当直线斜率不存在时,易求坐标,从而得到所求面积;②当直线的斜率存在时,设方程为,与椭圆方程联立得到韦达定理的形式,并确定的取值范围;利用,代入韦达定理的结论可求得关于的表达式,采用换元法将问题转化为,的值域的求解问题,结合函数单调性可求得值域;结合两种情况的结论可得最终结果.
(1),,
为等边三角形,,椭圆的标准方程为.
(2)设四边形的面积为.
①当直线的斜率不存在时,可得,,
.
②当直线的斜率存在时,设直线的方程为,
设,,
联立得:,
,,.
,,,,
面积.
令,则,,
令,则,,
在定义域内单调递减,.
综上所述:四边形面积的取值范围是.
练习册系列答案
相关题目