题目内容
(本小题满分13分)
已知数列{
}中,
对一切
,点
在直线y=x上,
(Ⅰ)令
,求证数列
是等比数列,并求通项
(4分);
(Ⅱ)求数列
的通项公式
(4分);
(Ⅲ)设![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818632776.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818648492.png)
的前n项和,是否存在常数
,使得数列
为等差数列?若存在,试求出
若不存在,则说明理由(5分).
已知数列{
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818382348.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818398498.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818414520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818429739.png)
(Ⅰ)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818460610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818538491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818554365.png)
(Ⅱ)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818570481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818382348.png)
(Ⅲ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818632776.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818648492.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818663487.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818679323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818741924.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818679323.png)
(Ⅰ)见解析;(Ⅱ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818788738.png)
(Ⅲ)当且仅当
时,数列
是等差数列 .
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818788738.png)
(Ⅲ)当且仅当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818819429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818835817.png)
(I)利用等比数列的定义
,
从而证明
是等比数列,其通项公式为
.
(II)在(I)的基础上可求出
然后再采用叠加求通项的方法求an.
(III)可以先利用
成等差数列求出
=2,然后再利用等差数列的定义证明当
=2时,
为等差数列即可.
(Ⅰ)由已知得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328191001018.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819131674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328191622786.png)
是以
为首项,以
为公比的等比数列
(Ⅱ)由(Ⅰ)知,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328192401080.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819287809.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819443176.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819459877.png)
将以上各式相加得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328194901345.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328196622693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819677766.png)
(Ⅲ)解法一:存在
,使数列
是等差数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328198021913.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328198331370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328198491262.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328198802310.png)
数列
是等差数列的充要条件是
、
是常数![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232820036239.png)
即![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232820098918.png)
又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328201141551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328201451115.png)
当且仅当
,即
时,数列
为等差数列
解法二: 存在
,使数列
是等差数列
由(I)、(II)知,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232820426705.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328204421008.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232820551718.png)
又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328205661608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328205821417.png)
当且仅当
时,数列
是等差数列 .
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328188662621.png)
从而证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818538491.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328188971064.png)
(II)在(I)的基础上可求出
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818913878.png)
(III)可以先利用
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328189441132.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818679323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818679323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818835817.png)
(Ⅰ)由已知得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819069856.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328191001018.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819116628.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819131674.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328191622786.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819178499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819194400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819225338.png)
(Ⅱ)由(Ⅰ)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328192401080.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819272883.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819287809.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819318818.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819443176.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819459877.png)
将以上各式相加得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328194901345.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328196622693.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232819677766.png)
(Ⅲ)解法一:存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818819429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818835817.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328198021913.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328198331370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328198491262.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328198802310.png)
数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818835817.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328199891069.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232820005309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232820036239.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232820098918.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328201141551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328201451115.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232820161195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232820223554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818819429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818835817.png)
解法二: 存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818819429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818835817.png)
由(I)、(II)知,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232820426705.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328204421008.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328205351103.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232820551718.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328205661608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232328205821417.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232820161195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818819429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823232818835817.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目