搜索
题目内容
对于空间的两条直线
,
和一个平面
,下列命题中的真命题是( )
A.若
,
,则
B.若
,
,则
C.若
,
,则
D.若
,
,则
试题答案
相关练习册答案
D
试题分析:对于A选项里面的
,
可能相交,也可能异面;对于B选项
,
可能是异面直线;对于C选项
,
可能相交,也可能异面;选项D根据直线和平面垂直的性质定理可知正确.
练习册系列答案
初中英语知识集锦系列答案
小学语文词语手册吉林教育出版社系列答案
初中总复习中考精编系列答案
创新金卷毕业升学系列答案
创新课时训练系列答案
创新学案课时学练测系列答案
创新学习三级训练系列答案
创新与探究系列答案
达标测试卷系列答案
达标训练系列答案
相关题目
如图,在四棱锥
中,底面
为菱形,
,
为
的中点.
(1)若
,求证:平面
平面
;
(2)点
在线段
上,
,试确定
的值,使
平面
.
如图,三棱柱ABC—A
1
B
1
C
1
的侧棱AA
1
⊥底面ABC,∠ACB = 90°,E是棱CC
1
上动点,F是AB中点,AC = 1,BC = 2,AA
1
= 4.
(Ⅰ)当E是棱CC
1
中点时,求证:CF∥平面AEB
1
;
(Ⅱ)在棱CC
1
上是否存在点E,使得二面角A—EB
1
—B的余弦值是
,若存在,求CE的长,若不存在,请说明理由.
已知如图,平行四边形
中,
,
,
,正方形
所在平面与平面
垂直,
分别是
的中点。
⑴求证:
平面
;
⑵求平面
与平面
所成的二面角的正弦值。
如图,四棱锥
的底面是直角梯形,
,
,
和
是两个边长为
的正三角形,
,
为
的中点,
为
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求直线
与平面
所成角的正弦值.
已知长方体
中,底面
为正方形,
面
,
,
,点
在棱
上,且
.
(Ⅰ)试在棱
上确定一点
,使得直线
平面
,并证明;
(Ⅱ)若动点
在底面
内,且
,请说明点
的轨迹,并探求
长度的最小值.
在下列条件下,可判断平面
与平面
平行的是( )
A.α、β都垂直于平面γ
B.α内不共线的三个点到β的距离相等
C.l,m是α内两条直线且l∥β,m∥β
D.l,m是异面直线,且l∥α,m∥α,l∥β,m∥β
已知
、
是两条不同的直线,
、
是两个不同的平面,则下面命题中正确的是( )
A.
∥
,
∥
∥
B.
∥
,
∥
C.
D.
∥
,
设
是三条不同的直线,
是两个不同的平面,则能使
成立是( )
A.
B.
C.
D.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总