题目内容
【题目】如图所示的多面体ABCDEF满足:正方形ABCD与正三角形FBC所在的两个平面互相垂直,FB∥AE且FB=2EA.
(1)证明:平面EFD⊥平面ABFE;
(2)求二面角E﹣FD﹣C的余弦值.
【答案】(1)证明见解析(2)
【解析】
(1)先证明AB⊥平面BCF,然后可得平面EFD⊥平面ABFE;
(2)建立空间直角坐标系,求解平面的法向量,然后利用向量的夹角公式可求.
(1)由题可得,因为ABCD是正方形且三角形FBC是正三角形,所以BC∥AD,BC=AD,FB=BC且∠FBC=60°,
又因为EA∥FB,2EA=FB,所以∠EAD=60°,在三角形EAD中,根据余弦定理可得:ED⊥AE.
因为平面ABCD⊥平面FBC,AB⊥BC,平面ABCD∩平面FBC=BC,且AB平面ABCD,所以AB⊥平面BCF,
因为BC∥AD, E A∥FB,FB∩BC=B,且FB、BC平面FCB,EA、AD平面EAD,所以平面EAD∥平面FBC,所以AB⊥平面EAD,
又因为ED平面EAD,所以AB⊥ED,
综上:ED⊥AE,ED⊥AB,EA∩AB=A且EA、AB平面ABFE,所以DE⊥平面ABFE,
又DE平面DEF,所以平面EFD⊥平面ABFE.
(2)如图,分别取BC和AD的中点O,G,连接OF,OG,
因为BO=OC且三角形FBC为正三角形,所以FO⊥BC,
因为AG=GD,BO=OC,所以OG∥AB,
由(1)可得,AB⊥平面FBC,则OG⊥平面FBC,
故OF、OB、OG两两垂直,分别以OB、OG、OF所在直线为x,y,z轴建立如图所示的空间直角坐标系,
不妨设BC=4,则,
设平面DEF的法向量为,平面DCF的法向量为,
则,
则,
所以
又二面角E﹣FD﹣C是钝二面角,所以二面角E﹣FD﹣C的余弦值为.
【题目】今年情况特殊,小王在居家自我隔离时对周边的水产养殖产业进行了研究.、两个投资项目的利润率分别为投资变量和.根据市场分析,和的分布列分别为:
5% | 10% | |||
0.8 | 0.2 | |||
2% | 8% | 12% | ||
0.2 | 0.5 | 0.3 | ||
(1)若在两个项目上各投资万元,和分别表示投资项目和所获得的利润,求方差,;
(2)若在两个项目上共投资万元,那么如何分配,能使投资项目所得利润的方差与投资项目所得利润的方差的和最小,最小值是多少?
(注:)
【题目】指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当数值大于或等于20.5时,我们说体重较重,当数值小于20.5时,我们说体重较轻,身高大于或等于我们说身高较高,身高小于170cm我们说身高较矮.
(Ⅰ)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图,请根据所得信息,完成下述列联表,并判断是否有的把握认为男生的身高对指数有影响.
身高较矮 | 身高较高 | 合计 | |
体重较轻 | |||
体重较重 | |||
合计 |
(Ⅱ)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如表所示:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
体重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求(解释变量(身高)对于预报变量(体重)变化的贡献值)(保留两位有效数字);
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
体重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
残差 |
②通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过重新采集发现,该组数据的体重应该为.小明重新根据最小二乘法的思想与公式,已算出,请在小明所算的基础上求出男体育特长生的身高与体重的线性回归方程.
参考数据:
,,,,
参考公式:,,,,.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.811 | 6.635 | 7.879 |