题目内容
【题目】已知函数f(x)=ln(x+ ﹣2)(a>0) (Ⅰ)当1<a<4时,函数f(x)在[2,4]上的最小值为ln ,求a;
(Ⅱ)若存在x0∈(2,+∞),使得f(x0)<0,求a的取值范围.
【答案】解:(Ⅰ)令g(x)=x+ ﹣2,∴g′(x)=1﹣ = ,
∵x∈[2,4],1<a<4,
∴x2﹣a>0,
∴g′(x)>0,
∴g(x)在[2,4]上单调递增,
∴f(x)在[2,4]上单调递增,
∴f(x)min=f(2)=ln(2+ ﹣2)=ln ,
∴a=3,
(Ⅱ)由(Ⅰ)可知,函数f(x)在(2,+∞)上单调递增,
∴f(x)min=f(2)=ln(2+ ﹣2)=ln ,
∵存在x0∈(2,+∞),使得f(x0)<0,
∴ln <0=ln1,
∴0<a<2
故a的取值范围为(0,2)
【解析】(Ⅰ)令g(x)=x+ ﹣2,利用导数判断g(x)的单调性,再根据符合函数判断f(x)的单调性,根据函数的单调性即可求出函数的最值,即可求出a的值,(Ⅱ)由由(Ⅰ)可知,函数f(x)在(2,+∞)上单调递增,求出函数的最小值,根据存在x0∈(2,+∞),使得f(x0)<0,得到a的取值范围.
【考点精析】掌握函数的最大(小)值与导数是解答本题的根本,需要知道求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值.
【题目】在一次耐力和体能测试之后,某校对其甲、乙、丙、丁四位学生的耐力成绩()和体能成绩()进行回归分析,求得回归直线方程为.由于某种原因,成绩表(如下表所示)中缺失了乙的耐力和体能成绩.
甲 | 乙 | 丙 | 丁 | |
耐力成绩(X) | 7.5 | m | 8 | 8.5 |
体能成绩(Y) | 8 | n | 8.5 | 9.5 |
综合素质 () | 15.5 | 16 | 16.5 | 18 |
(Ⅰ)请设法还原乙的耐力成绩和体能成绩;
(Ⅱ)在区域性校际学生身体综合素质比赛中,由甲、乙、丙、丁四位学生组成学校代表队参赛.共举行3场比赛,每场比赛均由赛事主办方从学校代表中随机抽两人参赛,每场比赛所抽的选手中,只要有一名选手的综合素质分高于16分,就能为所在学校赢得一枚荣誉奖章.若记比赛中赢得荣誉奖章的枚数为,试根据上表所提供数据,预测该校所获奖章数的分布列与数学期望.