题目内容
若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于
9
9
.分析:求出导函数,利用函数在极值点处的导数值为0得到a,b满足的条件,利用基本不等式求出ab的最值.
解答:解:由题意,求导函数f′(x)=12x2-2ax-2b
∵在x=1处有极值
∴a+b=6
∵a>0,b>0
∴ab≤(
)2=9,当且仅当a=b=3时取等号
所以ab的最大值等于9
故答案为:9
∵在x=1处有极值
∴a+b=6
∵a>0,b>0
∴ab≤(
a+b |
2 |
所以ab的最大值等于9
故答案为:9
点评:本题考查函数在极值点处的导数值为0、考查利用基本不等式求最值,需注意:一正、二定、三相等.
练习册系列答案
相关题目
若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于( )
A、2 | B、3 | C、6 | D、9 |