题目内容
【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为 .
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周长.
【答案】
(1)解:由三角形的面积公式可得S△ABC= acsinB= ,
∴3csinBsinA=2a,
由正弦定理可得3sinCsinBsinA=2sinA,
∵sinA≠0,
∴sinBsinC=
(2)解:∵6cosBcosC=1,
∴cosBcosC= ,
∴cosBcosC﹣sinBsinC= ﹣ =﹣ ,
∴cos(B+C)=﹣ ,
∴cosA= ,
∵0<A<π,
∴A= ,
∵ = = =2R= =2 ,
∴sinBsinC= = = = ,
∴bc=8,
∵a2=b2+c2﹣2bccosA,
∴b2+c2﹣bc=9,
∴(b+c)2=9+3cb=9+24=33,
∴b+c=
∴周长a+b+c=3+
【解析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA= ,即可求出A= ,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.
【考点精析】掌握正弦定理的定义和余弦定理的定义是解答本题的根本,需要知道正定理:;余弦定理:;;.
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差(°C) | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注: )