题目内容
【题目】已知抛物线:的焦点为,点在上且其横坐标为1,以为圆心、为半径的圆与的准线相切.
(1)求的值;
(2)过点的直线与交于,两点,以、为邻边作平行四边形,若点关于的对称点在上,求的方程.
【答案】(1) (2)
【解析】
(1)本题可以根据“点到准线的距离”等于“点到焦点的距离”得出的长,再根据“圆心到准线的距离”以及“点到焦点的距离”都是圆的半径即可列出算式并得出结果;
(2)首先可以根据题意画出图形,然后设出直线的方程以及直线的方程,再然后通过联立方程组求出点的纵坐标以及点的纵坐标之和,最后通过计算出点的纵坐标并与点的纵坐标进行比较即可计算出的值并得出结果。
(1)圆心到准线的距离为,因为点的横坐标为1,所以,
依题意,有,所以。
(2)如图所示,设点关于的对称点为,与的交点为,线段与直线的交点为,设直线的方程为,
将点的横坐标为带入抛物线方程中可得,
因为、分别为和的中点,所以,直线的方程为,
联立方程组,得,
因为是该方程的一个根,所以它的另一个根为,即点的纵坐标为.
联立方程组,得,
设,,则,
设,因为是平行四边形,所以,
即,
所以,即.
所以点与点的纵坐标相等,轴,
因为,所以,的方程为。
【题目】已知表1和表2是某年部分日期的天安门广场升旗时刻表.
表1:某年部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:31 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:59 | 12月20日 | 7:31 |
表2:某年2月部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15 | 2月19日 | 7:02 | 2月28日 | 6:49 |
(Ⅰ)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;
(Ⅱ)甲,乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立.记为这两人中观看升旗的时刻早于7:00的人数,求的分布列和数学期望.
(Ⅲ)将表1和表2中的升旗时刻化为分数后作为样本数据(如7:31化为).记表2中所有升旗时刻对应数据的方差为,表1和表2中所有升旗时刻对应数据的方差为,判断与的大小.(只需写出结论)
【题目】国家统计局进行第四次经济普查,某调查机构从15个发达地区,10个欠发达地区,5个贫困地区中选取6个作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区.普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:
普查对象类别 | 顺利 | 不顺利 | 合计 |
企事业单位 | 40 | 10 | 50 |
个体经营户 | 90 | 60 | 150 |
合计 | 130 | 70 | 200 |
(1)写出选择6个国家综合试点地区采用的抽样方法;
(2)根据列联表判断是否有97.5%的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”,分析造成这个结果的原因并给出合理化建议.
附:参考公式: ,其中
参考数据:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |