ÌâÄ¿ÄÚÈÝ
9£®ÔÚ¼«×ø±êÖУ¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$cos£¨¦È-$\frac{¦Ð}{4}$£©£¬ÒÔ¼«µãOΪԵ㣬¼«ÖáΪxÖáµÄÕý°ëÖὨÁ¢Æ½ÃæÖ±½Ç×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+3t}\\{y=-1+4t}\end{array}\right.$£¨tΪ²ÎÊý£©£¨1£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßCµÄÆÕͨ·½³Ì£®
£¨2£©ÊÔÅжÏÖ±ÏßlÓëÇúÏßCµÄλÖùØϵ£¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$cos£¨¦È-$\frac{¦Ð}{4}$£©£¬Õ¹¿ªÎª¦Ñ2=2$\sqrt{2}$¡Á$\frac{\sqrt{2}}{2}$£¨¦Ñcos¦È+¦Ñsin¦È£©£¬°Ñ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$´úÈë¼´¿ÉµÃ³ö£®Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+3t}\\{y=-1+4t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¼´¿É»¯ÎªÆÕͨ·½³Ì£®
£¨2£©Ô²ÐÄC£¨1£¬1£©£¬°ë¾¶R=$\sqrt{2}$£®Çó³öÔ²ÐÄCµ½Ö±ÏߵľàÀëdÓë°ë¾¶±È½Ï¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2$\sqrt{2}$cos£¨¦È-$\frac{¦Ð}{4}$£©£¬Õ¹¿ªÎª¦Ñ2=2$\sqrt{2}$¡Á$\frac{\sqrt{2}}{2}$£¨¦Ñcos¦È+¦Ñsin¦È£©£¬¡àx2+y2=2x+2y£¬Å䷽Ϊ£¨x-1£©2+£¨y-1£©2=2£®
Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-1+3t}\\{y=-1+4t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt»¯Îª4x-3y+1=0£®
£¨2£©Ô²ÐÄC£¨1£¬1£©£¬°ë¾¶R=$\sqrt{2}$£®
Ô²ÐÄCµ½Ö±ÏߵľàÀëd=$\frac{|4-3+1|}{\sqrt{{4}^{2}+£¨-3£©^{2}}}$=$\frac{2\sqrt{5}}{5}$$£¼\sqrt{2}$£¬
¡àÖ±ÏßlÓëÇúÏßCµÄÏཻ£®
µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÔ²µÄλÖùØϵ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | -$\frac{2}{3}$£¬-1 | B£® | -$\frac{2}{3}$£¬-3 | C£® | -$\frac{3}{2}$£¬-1 | D£® | -$\frac{3}{2}$£¬-3 |
A£® | £¨-2£¬1] | B£® | £¨-5£¬1] | C£® | £¨-2£¬4] | D£® | £¨-5£¬4] |