题目内容
设不等式组
|
(1)求数列{an}的通项公式;
(2)(理)设Sn=
1 |
an+1 |
1 |
an+2 |
1 |
a2n |
(3)设Tk=
1 |
a1 |
1 |
a2 |
1 |
ak |
7n+11 |
36 |
(文)记数列{an}的前n项和为Sn,且Tn=
Sn |
3•2n-1 |
分析:(1)由题设知Dn内的整点在直线x=1和x=2上.记直线y=-nx+3n为l,l与直线x=1和x=2的交点的纵坐标分别为y1、y2,由y1=2n,y2=n,知an=3n(n∈N*).
(2)(理)(i)由Sn=
+
++
=
×(
+
++
).知Sn+1-Sn=
×(
+
-
)=
×(
-
)>0.所以Sn=
+
+…+
≥
(n>1,n∈N*).
(ii)T2n=
×(1+
+S2+S4++S2n-1)≥
×(1+
+
)=
(n>1,n∈N*).
(文)由题设知Tn=
.Tn+1-Tn=
-
=
,n≥3时{Tn}是递减数列,且T1=1<T2=T3=
,所以T2,T3是数列{Tn}的最大项,故m≥T2=
.
(2)(理)(i)由Sn=
1 |
an+1 |
1 |
an+2 |
1 |
a2n |
1 |
3 |
1 |
n+1 |
1 |
n+2 |
1 |
2n |
1 |
3 |
1 |
2n+1 |
1 |
2n+2 |
1 |
n+1 |
1 |
3 |
1 |
2n+1 |
1 |
2n+2 |
1 |
an+1 |
1 |
an+2 |
1 |
a2n |
7 |
36 |
(ii)T2n=
1 |
3 |
1 |
2 |
1 |
3 |
1 |
2 |
| ||||||||
n-1项 |
7n+11 |
36 |
(文)由题设知Tn=
n(n+1) |
2n |
(n+1)(n+2) |
2n+1 |
n(n+1) |
2n |
(n+1)(2-n) |
2n+1 |
3 |
2 |
3 |
2 |
解答:解:(1)∵x>0,y=3n-nx>0,0<x<3,x=1或x=2.
∴Dn内的整点在直线x=1和x=2上.记直线y=-nx+3n为l,l与直线x=1和x=2的交点的纵坐标分别为y1、y2,
∴y1=2n,y2=n.∴an=3n(n∈N*).
(2)(理)(i)Sn=
+
++
=
×(
+
++
).
∵Sn+1-Sn=
×(
+
-
)=
×(
-
)>0.
∴Sn+1>Sn,Sn≥S2(n>1,n∈N*).
∵S2=
×(
+
)=
∴Sn=
+
++
≥
(n>1,n∈N*).
(ii)T2n=
×[1+
++
)]=
×(1+
+S2+S4++S2n-1)
≥
×(1+
+
)=
(n>1,n∈N*).
(文)∵Sn=3(1+2+3+…+n)=
,∴Tn=
.
∴Tn+1-Tn=
-
=
,∴当n≥3时,Tn+1<Tn,∴n≥3时{Tn}是递减数列,且T1=1<T2=T3=
,∴T2,T3是数列{Tn}的最大项,故m≥T2=
∴Dn内的整点在直线x=1和x=2上.记直线y=-nx+3n为l,l与直线x=1和x=2的交点的纵坐标分别为y1、y2,
∴y1=2n,y2=n.∴an=3n(n∈N*).
(2)(理)(i)Sn=
1 |
an+1 |
1 |
an+2 |
1 |
a2n |
1 |
3 |
1 |
n+1 |
1 |
n+2 |
1 |
2n |
∵Sn+1-Sn=
1 |
3 |
1 |
2n+1 |
1 |
2n+2 |
1 |
n+1 |
1 |
3 |
1 |
2n+1 |
1 |
2n+2 |
∴Sn+1>Sn,Sn≥S2(n>1,n∈N*).
∵S2=
1 |
3 |
1 |
3 |
1 |
4 |
7 |
36, |
1 |
an+1 |
1 |
an+2 |
1 |
a2n |
7 |
36 |
(ii)T2n=
1 |
3 |
1 |
2 |
1 |
2n |
1 |
3 |
1 |
2 |
≥
1 |
3 |
1 |
2 |
| ||||||||
n-1项 |
7n+11 |
36 |
(文)∵Sn=3(1+2+3+…+n)=
3n(n+1) |
2 |
n(n+1) |
2n |
∴Tn+1-Tn=
(n+1)(n+2) |
2n+1 |
n(n+1) |
2n |
(n+1)(2-n) |
2n+1 |
3 |
2 |
3 |
2 |
点评:本题考查数列的性质和应用,解题时要注意公式的合理运用和不等式的应用.
练习册系列答案
相关题目