题目内容

(2012•湖北)过点P(1,1)的直线,将圆形区域{(x,y)|x2+y2≤4}分两部分,使得这两部分的面积之差最大,则该直线的方程为(  )
分析:由扇形的面积公式可知,劣弧
AB
所的扇形的面积S1=
1
2
α•22
=2α,则S2=4π-2α(∠AOB=α)要求面积差的最大值,即求α的最小值,根据直线与圆相交的性质可知,只要当OP⊥AB时,α最小,可求
解答:解:设过点P(1,1)的直线与圆分别交于点A,B,且圆被AB所分的两部分的面积分别为S1,S2且S1≤S2
劣弧
AB
所对的圆心角∠AOB=α,则S1=
1
2
α•22
=2α,S2=4π-2α(0<α≤π)
∴S△AOB+S2-(S1-S△AOB)=4π-4α+
要求面积差的最大值,即求α的最小值,根据直线与圆相交的性质可知,只要当OP⊥AB时,α最小
此时KAB=-1,直线AB的方程为y-1=-(x-1)即x+y-2=0
故选A
解:要使直线将圆形区域分成两部分的面积之差最大,必须使过点P的圆的弦长达到最小,所以需该直线与直线OP垂直即可.
又已知点P(1,1),则KOP=1,
故所求直线的斜率为-1.又所求直线过点P(1,1),
由点斜式得,所求直线的方程为y-1=-(x-1),即.x+y-2=0
故选A



点评:本题主要考查了直线与圆相交性质的应用,解题的关键是根据扇形的面积公式把所要求解的两面积表示出来
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网