题目内容
已知定义在R上的函数f(x)满足下面两个条件:
①对于任意的x,y∈R,都有f(x+y)=f(x)+f(y)
②当x>0时,f(x)<0
(1)判断f(x)的奇偶性,并证明;
(2)判断f(x)的单调性,并证明;
(3)如果不等式对于任意x∈R都成立,求实数m的取值范围.
①对于任意的x,y∈R,都有f(x+y)=f(x)+f(y)
②当x>0时,f(x)<0
(1)判断f(x)的奇偶性,并证明;
(2)判断f(x)的单调性,并证明;
(3)如果不等式对于任意x∈R都成立,求实数m的取值范围.
解:(1)取x=y=0,可得f(0)=0,
再取y=﹣x,可得f(x)+f(﹣x)=f(0)=0,
所以f(﹣x)=﹣f(x),f(x)是奇函数
(2)任取x1<x2,则 f(x2)﹣f(x1)=f(x2)+f(﹣x1)=f(x2﹣x1)<0,
可得 f(x1)>f(x2),所以f(x) 在R上是减函数
(3)∵ ,且f(x)是奇函数
∴
∵f(x) 在R上是减函数
∴ ,即
∴
∴下面即求函数 的最大值
由于 = ,sinx∈[﹣1,1]
∴当且仅当sinx=1时, =
所以
再取y=﹣x,可得f(x)+f(﹣x)=f(0)=0,
所以f(﹣x)=﹣f(x),f(x)是奇函数
(2)任取x1<x2,则 f(x2)﹣f(x1)=f(x2)+f(﹣x1)=f(x2﹣x1)<0,
可得 f(x1)>f(x2),所以f(x) 在R上是减函数
(3)∵ ,且f(x)是奇函数
∴
∵f(x) 在R上是减函数
∴ ,即
∴
∴下面即求函数 的最大值
由于 = ,sinx∈[﹣1,1]
∴当且仅当sinx=1时, =
所以
练习册系列答案
相关题目
已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=( )
A、0 | B、2013 | C、3 | D、-2013 |