题目内容

8.设数列{an}满足:a1=$\frac{1}{2}$,an+1-an=2(an+1-1)(an-1)
(Ⅰ)证明数列{$\frac{1}{{a}_{n}-1}$}是等差数列并求数列{an}的通项公式an
(Ⅱ)证明:a1•a2•a3…an$<\frac{1}{\sqrt{2n}}$.

分析 (Ⅰ)由an+1-an=2(an+1-1)(an-1)变形可得$\frac{1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$=-2,所以{$\frac{1}{{a}_{n}-1}$}是以-2为首项,-2为公差的等差数列,从而an=$1-\frac{1}{2n}$=$\frac{2n-1}{2n}$;
(Ⅱ)由(Ⅰ)知a1•a2•…•an=$\frac{1}{2}•\frac{3}{4}•…•\frac{2n-1}{2n}$,由于当b>a>0时,有$\frac{a+1}{b+1}>\frac{a}{b}$,所以($\frac{1}{2}•\frac{3}{4}•\frac{5}{6}•…•\frac{2n-1}{2n}$)2<($\frac{1}{2}•\frac{3}{4}•\frac{5}{6}•…•\frac{2n-1}{2n}$)×($\frac{2}{3}•\frac{4}{5}•\frac{6}{7}•…•\frac{2n}{2n+1}$)=$\frac{1}{2n+1}$,即得结果.

解答 证明:(Ⅰ)∵an+1-an=2(an+1-1)(an-1),
∴2(an+1-1)(an-1)=(an+1-1)-(an-1),
上式两边同除以(an+1-1)(an-1)(可验证(an+1-1)(an-1)≠0),
化简得 $\frac{1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$=-2,
所以{$\frac{1}{{a}_{n}-1}$}是以-2为首项,-2为公差的等差数列,
即$\frac{1}{{a}_{n}-1}$=-2-2(n-)=-2n,
即an=$1-\frac{1}{2n}$=$\frac{2n-1}{2n}$;
(Ⅱ)由(Ⅰ)知a1•a2•…•an=$\frac{1}{2}•\frac{3}{4}•…•\frac{2n-1}{2n}$,
∵当b>a>0时,有$\frac{a+1}{b+1}>\frac{a}{b}$,
∴$\frac{2}{3}•\frac{4}{5}•\frac{6}{7}•…•\frac{2n}{2n+1}$>$\frac{1}{2}•\frac{3}{4}•\frac{5}{6}•…•\frac{2n-1}{2n}$,
∴($\frac{1}{2}•\frac{3}{4}•\frac{5}{6}•…•\frac{2n-1}{2n}$)×($\frac{2}{3}•\frac{4}{5}•\frac{6}{7}•…•\frac{2n}{2n+1}$)
=$\frac{1}{2n+1}$>($\frac{1}{2}•\frac{3}{4}•\frac{5}{6}•…•\frac{2n-1}{2n}$)2
∴$\frac{1}{2}•\frac{3}{4}•\frac{5}{6}•…•\frac{2n-1}{2n}$<$\frac{1}{\sqrt{2n+1}}$<$\frac{1}{\sqrt{2n}}$,
∴a1•a2•…•an<$\frac{1}{\sqrt{2n}}$.

点评 本题考查求数列的通项公式,利用放缩法是解题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网