题目内容
【题目】设函数,则下列结论错误的是( )
A. f(x)的一个周期为-2π
B. y=f(x)的图象关于直线x=对称
C. f(x+π)的一个零点为x=
D. f(x)在单调递减
【答案】D
【解析】对于A选项,因为f(x)=cos的周期为2kπ(k∈Z),所以f(x)的一个周期为-2π,A项正确.对于B选项,因为f(x)=cos图象的对称轴为直线x=kπ- (k∈Z),所以y=f(x)的图象关于直线x=对称,B项正确.对于C选项,f(x+π)=cos.令x+=kπ+ (k∈Z),得x=kπ-,当k=1时,x=,所以f(x+π)的一个零点为x=,C项正确.对于D选项,因为f(x)=cos的递减区间为(2kπ-,2kπ+) (k∈Z),递增区间为(2kπ+,2kπ+)(k∈Z),所以是减区间,(,π)是增区间,D项错误.故选D.
【题目】在创建“全国文明卫生城”过程中,某市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的1000人的得分(满分100分)统计结果如下表所示.
组别 | |||||||
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)由频数分布表可以大致认为,此次问卷调查的得分服从正态分布, 近似为这1000人得分的平均值值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求;
(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案::
(ⅰ)得分不低于的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;
(ⅱ)每次获赠送的随机话费和对应的概率为:
赠送的随机话费(单元:元) | 20 | 40 |
概率 | 0.75 | 0.25 |
现有市民甲要参加此次问卷调查,记 (单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.
附:参考数据与公式
,若,则
①;
②;
③.