题目内容
(1)求值:lg2•lg50+lg5•lg20-lg100•lg5•lg2;
(2)已知log73=a,log74=b,求log4948.
(2)已知log73=a,log74=b,求log4948.
(1)原式=lg2•(lg5+1)+lg5•(lg2+1)-2•lg5•lg2
=lg2+lg5
=1
(2)∵log73=a,log74=b,
∴log4948=
log7(3×16)=
(log73+log716)=
(log73+2log74)
=
(a+2b)
=lg2+lg5
=1
(2)∵log73=a,log74=b,
∴log4948=
1 |
2 |
1 |
2 |
1 |
2 |
=
1 |
2 |
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目