题目内容

【题目】在正方体ABCD﹣A1B1C1D1中,E,F分别为CC1和BB1的中点,则异面直线AE与D1F所成角的余弦值为(
A.0
B.
C.
D.

【答案】D
【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系, 设正方体ABCD﹣A1B1C1D1中棱长为2,
则A(2,0,0),E(0,2,1),D1(0,0,2),F(2,2,1),
=(﹣2,2,1), =(2,2,﹣1),
设直线AE与D1F所成角为θ,
则cosθ=| |=
∴直线AE与D1F所成角的余弦值为
故选D.

以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出直线AE与D1F所成角的余弦值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网