题目内容
【题目】如图,⊙O过平行四边形ABCT的三个顶点B,C,T,且与AT相切,交AB的延长线于点D.
(1)求证:AT2=BTAD;
(2)E、F是BC的三等分点,且DE=DF,求∠A.
【答案】
(1)证明:因为∠A=∠TCB,∠ATB=∠TCB,
所以∠A=∠ATB,所以AB=BT.
又AT 2=ABAD,所以AT 2=BTAD
(2)解:取BC中点M,连接DM,TM.
由(1)知TC=TB,所以TM⊥BC.
因为DE=DF,M为EF的中点,所以DM⊥BC.
所以O,D,T三点共线,DT为⊙O的直径.
所以∠ABT=∠DBT=90°.
所以∠A=∠ATB=45°.
【解析】(1)证明AB=BT,结合切割线定理,即可证明结论;(2)取BC中点M,连接DM,TM,可得O,D,T三点共线,DT为⊙O的直径,即可求∠A.
【题目】近年来,武汉市出现了非常严重的雾霾天气,而燃放烟花爆竹会加重雾霾,是否应该全面禁放烟花爆竹已成为人们议论的一个话题.武汉市环保部门就是否赞成禁放烟花爆竹,对400位老年人和中青年市民进行了随机问卷调查,结果如下表:
赞成禁放 | 不赞成禁放 | 合计 | |
老年人 | 60 | 140 | 200 |
中青年人 | 80 | 120 | 200 |
合计 | 140 | 260 | 400 |
附:K2=
P(k2>k0) | 0.050 | 0.025 | 0.010 |
k0 | 3.841 | 5.024 | 6.635 |
(1)有多大的把握认为“是否赞成禁放烟花爆竹”与“年龄结构”有关?请说明理由;
(2)从上述不赞成禁放烟花爆竹的市民中按年龄结构分层抽样出13人,再从这13人中随机的挑选2人,了解他们春节期间在烟花爆竹上消费的情况.假设一位老年人花费500元,一位中青年人花费1000元,用X表示它们在烟花爆竹上消费的总费用,求X的分布列和数学期望.
【题目】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:
连续剧播放时长(分钟) | 广告播放时长(分钟) | 收视人次(万) | |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.(13分)
(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;
(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?