题目内容
若函数的零点与
的零点之差的绝对值不超过
, 则
可以是( )
A.![]() | B.![]() |
C.![]() | D.![]() |
D
解析试题分析:的定义域为
,因为,
,所以,其零点在区间(3,4)之间。
考查选项中的函数,与
的零点为2,
为4,
的零点为
,故与
的零点之差的绝对值不超过
的函数
应为
,选D.
考点:函数零点存在定理
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
已知定义在R上的函数满足
,
,且在区间
上是减函数.若方程
在区间
上有两个不同的根,则这两根之和为( )
A.±8 | B.±4 | C.±6 | D.±2 |
若存在负实数使得方程 成立,则实数
的取值范围是 ( )
A.![]() | B.![]() | C.![]() | D.![]() |
函数的最大值为( )
A.![]() | B.![]() | C.![]() | D.![]() |
设函数有两个极值点
,且
,则 ( )
A.![]() | B.![]() |
C.![]() | D.![]() |
下列函数中,值域是的函数是( )
A.![]() | B.![]() | C.![]() ![]() | D.![]() |
若函数对于任意的
都有
,且
,则
( )
A.![]() | B.![]() | C.![]() | D.![]() |
记实数中的最大数为max{
} , 最小数为min{
}则max{min{
}}= ( )
A.![]() | B.1 | C.3 | D.![]() |