题目内容

12、已知函数f(x+1)是定义在R上的奇函数,若对于任意给定的不等实数x1、x2,不等式(x1-x2)[f(x1)-f(x2)]<0恒成立,则不等式f(1-x)<0的解集为(  )
分析:先利用不等式(x1-x2)[f(x1)-f(x2)]<0恒成立得到函数f(x)是定义在R上的增函数;再利用函数f(x+1)是定义在R上的奇函数得到函数f(x)过(1,0)点,二者相结合即可求出不等式f(1-x)<0的解集.
解答:解:由不等式(x1-x2)[f(x1)-f(x2)]<0恒成立得,函数f(x)是定义在R上的减函数 ①.
又因为函数f(x+1)是定义在R上的奇函数,所以有函数f(x+1)过点(0,0);
故函数f(x)过点(1,0)②.
①②相结合得:x<1时,f(x)<0.
故不等式f(1-x)<0转化为1-x>1?x<0.
故选C.
点评:本题主要考查函数奇偶性和单调性的综合应用问题.关键点有两处:①判断出函数f(x)的单调性;②利用奇函数的性质得到函数f(x)过(1,0)点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网