题目内容

设{an}是等差数列,数列{bn}满足bn=anan+1an+2(n∈N*),{bn}的前n项和用Sn表示,若3a5=8a12>0,试问n为多大时,Sn达到最大,并加以证明.

答案:
解析:

  解:由3a5=8a12>0,可得a5=- d且d<0

  解:由3a5=8a12>0,可得a5=-d且d<0.所以a16=-d>0,a17d<0.从而可知b1>b2>…>b14>0>b17>b18>…,而b15=a15a16a17<0,a16=a16a17a18>0,

  |a18|>a15

  所以b16>-b15.所以S16=S14+b15+b16>S14.故n=16时,Sn达到最大.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网