题目内容

给定公比为 q ( q≠1)的等比数列{ a n},设 b 1=a 1+a 2+a 3,b 2=a 4+a 5+a 6,…,b n=a 3n-2+a 3n-1+a 3n,…,则数列{ b n}(  )
分析:由题意an=a1qn-1,bn=a 3n-2+a 3n-1+a 3n,可得
bn+1
bn
=
a3n+1+a3n+2+a3n+3
a3n-2+a3n-1+a3n
=q3,故数列{bn}是公比为q3的等比数列
解答:解析:由题意an=a1qn-1,bn=a 3n-2+a 3n-1+a 3n
bn+1
bn
=
a3n+1+a3n+2+a3n+3
a3n-2+a3n-1+a3n
=
a1q3n+a1q3n+1+a1q3n+2
a1q3n-3+a1q3n-2+a1q3n-1

=
a1q3n(1+q+q2)
a1q3n-3(1+q+q2)
=q3
因此,数列{bn}是公比为q3的等比数列.
故选C.
点评:本题为等比数列的判定,证明数列的后一项与前一项的比值是确定的常数是解决问题的关键,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网