题目内容

已知向量|
a
|=(cosθ,sinθ)和|
b
|=(
2
-sinθ,cosθ),θ∈[
11π
12
17π
12
].
(1)求|
a
+
b
|的最大值;
(2)若|
a
+
b
|=
4
10
5
,求sin2θ的值.
分析:(1)利用向量的坐标形式的四则运算法则求出
a
+
b
的坐标;利用向量模的坐标公式求出
a
+
b
的模,求出角的范围,求出模的最大值.
(2)利用三角函数的诱导公式将sin2θ用-cos2(θ+
π
4
)
表示,再利用二倍角公式求出值.
解答:解:(1)
a
+
b
=(cosθ-sinθ+
2
,cosθ+sinθ)

|
a
+
b
|=
(cosθ-sinθ+
2
)
2
+(cosθ+sinθ)2

=
4+2
2(cosθ-sinθ)
=
4+4cos(θ+
π
4
)
=2
1+cos(θ+
π
4
)
.(3分)
θ∈[
11π
12
17π
12
]
,∴
6
≤θ+
π
4
3

-
3
2
≤cos(θ+
π
4
)≤
1
2
.(5分)
|
a
b
|
max
=
6
.(7分)
(2)由已知|
a
+
b
|=
4
10
5
,得cos(θ+
π
4
)=
3
5
.(9分)
sin2θ=-cos2(θ+
π
4
)

=1-2cos2(θ+
π
4
)

=1-2×
9
25
=
7
25
.(12分)
点评:本题考查向量的四则运算法则、考查向量模的坐标公式、考查求三角函数的最值方法、考查三角函数的诱导公式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网